Mathematics of Computers
by
Matthew Zamora

Presented to Rockville Science Center’s Numberphiles on 16Nov23

Transistors have a pass through voltage that is
moderated by a signal voltage

Conceptual Power Transistor

(e.g. MOSFET)
E- Signal line is a-E
. 1 gate controlling 1
Signal In (3 Volts) -4 ifPower

' Supply is able |

".-—
JPtle 1 toflowornot 1
-” —————————
-
d"'
"
v -

Output (Depends
on Signal line,
either OV or 12V)

Power Supply
Line (12V)

Ground for Signal
Line

Notice how the signal voltage could be orders of magnitude lower than the through voltage, allowing for a step up
voltage similar to how a CPU (low voltage) can turn ‘on’ an electric motor (high voltage).

Two Types of Transistors — Control line either
turns on or off the output

* P-type — giving the gate pin voltage, turns off the output
* N-type — giving the gate pin voltage turns on the output

* In practice we only need three pins instead of four — because the gate
pin and power supply can share the same ground.

<P ‘ N ’ P L
e
PNP Transistor '
2 g
N B N © .

£ Typical Transistor

NPN Transistor

https://www.theengineeringprojects.com/2018/06/introduction-to-transistor.html

Turning on the gate (signal line) creates an electric field that creates a
‘conductive’ zone of the semiconductor allowing electricity to flow. Only
a small voltage is needed to establish the conductive zone — but a high
voltage can flow through the bridge.

secondary voltage off
source gate _

oxide
layer

n-type
silicon

https://www.britannica.com/technology/transistor

Transistor Symbols

S 5 S S 5
P-channel ?® G g G—' G
D D D D D

Bit Addition

Addition Result Carry
0+0 = O O
O+1 = 1 0
1+0 = 1 0

|
@
—,

1+ 1

Logic

* A Catis a Dog, and a Hamster is a Mammal -> False and True -> False
e 1=1 or 2=3, True or False -> True

* It is not true that a Cat is a Dog, and a Hamster is a Mammal ->
(not False) and True -> (True) and True -> True

Abstraction #1 Voltage as True/False

 Let True be a wire with 5V, and False be a wire with OV (grounded)

Abstraction #2

* Let numbers be represented as an ordered set of bits (a Boolean
vector, or truth vector)

* Following n*2 order, represent arbitrary numbers as follow:

Decimal Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

o N|o|O|~|lW|IN]|~|O

Abstraction #2 —part B

* Letters can also be represented

Converting the text “"hope” into binary

Characters: h 0 p e

ASCII Values: 104 111 112 101

Binary Values: 01101000 01101111 01110000 01100101

Bits: 8 8 8 8

https://www.computerhope.com/issues/ch001632.htm

Character | Decimal Binary Character | Decimal Binary
Number Number Number Number
blank space 32 00100000 A 94 0101 1110
! 33 0010 0001 - 95 0101 1111
- 34 00100010 96 0110 0000
35 0ol00011 a a7 01100001
b 36 0010 0100 b a8 01100010
A 85 0100 0001 c 9 01100011
B B 01000010 d 100 01100100
C 67 01000011 e 101 01100101
D 68 01000100 f 102 01100110
E 69 01000101 z 103 01100111
F 70 01000110 h 104 0110 1000
= 71 01000111 i 105 0110 1001
H 72 0100 1000 3 10& 01101010
I 73 0100 1001 k 107 01101011
J 74 0100 1010 1 108 0110 1100
K 75 0100 1011 m 102 01101101
L 76 0100 1100 n 110 01101110
M 7 0100 1101 o 111 01101111
H 78 01001110 P 112 0111 0000
o 79 01001111 q 113 0111 0001
P 80 0101 0000 r 114 0111 0010
Q 8l 0101 0001 5 115 01110011
R 82 0101 0010 t 116 0111 0100
s 83 0101 0011 u 117 0111 0101
T 84 0101 0100 v 118 01110110
1) g5 0101 0101 wr 112 01110111
v 86 0101 0110 X 120 0111 1000
W 87 0101 0111 v 121 0111 1001
X 88 0101 1000 -] 122 0111 1010
¥ 89 0101 1001 { 123 0111 1011
Z 80 0101 1010 | 124 0111 1100
[91 01011011 } 125 01111101
) 92 0101 1100 - 126 01111110
] 93 0101 1101

Abstraction #2 — part C

* In fact — let any arbitrary symbol be represented as a unique
sequence of bits. What symbols are depend on how they are used.
Common uses:

* |nstruction sequences — instruct the CPU what operation to do next

e Location in memory — a location to the start of a sequence of binary
information in a matrix of bits (RAM)

* Anything a program might be using — for example a floating point (decimal) of
arbitrary (or fixed) decimal precision

Half-precision C&Z3

trekhleb.dev

Sign Biased Exponent — - Fraction (Significand) ———
1 bit 5 bits (k = 5) ’ 10 bits
|
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1[1Tefel1[1][1Te]1[1]e]e[1]0]1]0] = -2/7.15625
24 23 22 21 20 2—1 2—2 2—3 2—4 2—5 2—6 2—7 2—8 2—9 2—10

4 1 0
exponent = 2 + 2 + 2 = 19

1 51
- 1 2 =]

15

. k—
bias = 2

x_ biased_exponent = exponent - bias = 19 - 15

Il

N
N
\

) -1 -3 -4 =7 -9
Praction 22 .2 € 2 & 2 % 2=

0.5 + 0.125 + 0.0625 + 0.0078125 + 0.001953125 =

= 0.697265625

/
/
7

1 x 2" x (24 0.697265625) = -27.15625

https://trekhleb.dev/blog/2021/binary-floating-point/

Math has a long history of abstracting
numbers, and storing them by a base

An Abicus. Note how for 9, one bead represents 5.

y i ¢ ® I b §

To pt
4852 Beads "
representin
4 8 5 2 ' pltsofS .

< > =20
© <D< Q—Ket (digit) rods

()‘) Q)
9‘}‘>9 Q ep esenting
‘?‘) O nits of'l 4
X2l 222 g
Thousands i /D /
Hu d eds 0 ¢ /A Frame
4 - ey L\ ‘ « Y

S The names of
P the abacus parts and
apresentation of numbers

Abstraction

3 — Addition Can Be Done Via

Comparting the State of Two Bit Vectors

BINARY ADDITION

10110 110101
+10111 +100110
101101 100111

10000010
5 53
+23 +38
=45 39

Abstraction #4 Basic Logic can be represented
by physical transistor configurations

OR Gate

Voo Symool:
) >—ou

Truth takble: COR Gate
~ 5| out |

;t.u
r —
= e @ Ellil

= & = &

PR e ®

https://www.101computing.net/creating-logic-gates-using-transistors/

AND Gate

vVcc

"'0

Symkol:

L

i Do

Truth takle: AND Gate

[< B <~

E cut
a

1 a
a a
1 1

NOT Gate

Symiol:

n —[>o— out
Vce

Truth takle: NOT Gate

A cut
a 1
1 5]

NAND Gate

\Tisls Symbol:

A —
—_

Tructh takle: HAND Gate

F:9 B out

1

[e~ B <~

g
1 1
g 1
1 e

Exclusive OR (XOR)

-
ot
B —

A
B4l

equivalent circuat

s 3] b

= = | b
iZi

= — — 3
=1

out

The output of an
XOR gate goes

HIGH if the inputs
are different from
each other XOR
gates only come
with two mnputs.

Universal Turning Machine

Infinitely Long Ticker Tape Memory

Mowe

Left

> §
3| |8
= =
I
| |8
2| |3
Machine
Table
Move
Right
Machine
State

Machine Head

Any arbitrary algorithm can be run as a series of steps
assuming:

There is infinite memory tape that can be read from,
and written to
A machine can read the tape, and do conditional steps
based on the value loaded from the tape:

* Move to a given location and trigger a read

* Move to a given location and trigger a write based

on ‘state’ set from the previous reads

With that — any programming language can be written!
RAM is the memory, and the CPU is the machine
fetching data from RAM, and doing an operation on
the data — eventually writing back to RAM (this writing
can directly control your monitor or peripheral devices
too!)
Note that the “Von-Neumann architecture” is the
practical implementation of a Turing machine used in
modern computers as a state-machine.

Abstraction

Gates

Ae s 4

Fe

The half-adder

Sum

CARRY

Half-adder truth table

Outputs

Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

5 -Bit Addition |s a Set of Logic

Name ‘ symbol & notation Explanation

The inverter

NOT A= NOT simply accepts an input

and outputs the opposite.

AND A AB All inputs must be positive (1)
B — before the output is positive (1 or ON)
Same as AND, but the outcome is the

A — inverse (NOT).
NAND A.B
Horame B = So, perform AND first, then apply NOT

to the output.

A At least one input must be positive (1)
to give a positive output (1 or ON).
OR A+B 9 P P!

All inputs could also be positive.

Same as OR, but the outcome is the

A inverse (NOT).
NOR A+B
reren B So, perform OR first, then apply NOT

to the output.

Only one input can be positive (1)

to give a positive output (1 or ON).
xor A ADB

sk | B If both are positive, the output is

negative (0 or OFF)

All inputs must be the same (either

A . high or low) for a positive output (1).
XNOR ADB
*eXclusive Not OR B = . .
Otherwise, the output is negative (0

or OFF)

*ComputerEngineeringforBabies.com

The Full Bit Adder

Full-adder truth table

Inputs Outputs

CIN® A B Cyn | SUM Cour
[S—
BEw

0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1

The ADD instruction a one byte
(8 bits) adder

out

ddddd

iiiii

out

llllll

ddddd

out

ddddd

out

ddddd

-out

ddddd

Abstraction #6 — The CPU has
instructions that ‘trigger’
tra N SlStO r_ba Sed |Og|c Fig 5: ZipCPU Instructions

Notice the “ADD” instruction that will compare ~ Normal instructions Compressed
one byte (e.g. 00000001 + 00000010) and move (%% SUB 10000 CMP |000 SUB
the result to ‘results’ location called a register ~ [00001)AND J10001 TEST jeo1 |AND

(result: 00000011) “[eee16[ADD [100200[LW [e10 [ADD
* There is also a “MOV” which moves to a SeonniOR [1eennERENI1 SRS
specified location in memory 00100 XOR 10100 |LH jie0 LW

00101 [LSR 10101 |SH 101 SW
00110 [LSL 10110 (LB 110 LDI

* Critically there is a “CMP” which compares two
values, and will move to location A if the first

values is than the second value, otherwise it 00111|ASR 10111|SB m_ MOV
will go to location B. This is like the ‘if this then [e1000 BREV 11000 e
do this else do that’ type of logic in 01001 [LDILO [11001 Reserved for FPU
programming language. This aﬁows for dynamic [o1010 MPYUHI 11010 |FPADD
program branChmg- 01011 MPYSHI Special Insn [11011 |FPSUB

* One instruction is called “per clock tick’ — a e1100[MPY [11100[BREAK 11100 |[FPMPY
square wave 01101 MOV 11101 [LOCK 11101 |FPDIV

01110 |DIVU 11110 [SIM 11110 |FPI2F
01111 |DIVS 11111 (INOOP 11111 |FPF2I

5 o I8 il
128-Bit DDR4-3200 (2x64-Bit)

Parts of the VCN Engine 2:2

1
Unified Memory Controller
7:6

i |
|

. if
} 1
256-Bit FPU {‘])
|

1
!
|
|

z% Zen3 Core | Zen3 Core | Zen3 Core |
| i 1256K8B
! L2¢/1 256KB
GRU I L2§ 3
GPU

BTie0s) BLis)ress) (2« Sin016) ||, 10%

o S512KB L2s% 512KB L2$%

512K8
LIs

S12Km
L35

.+

SdOY 40]0) Xpr SJOY 40|0D Xt

8MB,L3$

L ']
701 (16x 512KB)

¢

$40Y Z x91

512KM S12K8

clock signal 035 35

+

rising S12K8 1512K8 512K8 . ! : e n
edge s s L3s GCN5/Vega Compute Unit 9.3 =

54Oy Z X91

7s6KB '256KB |

256K8 1§ 256K8 256K0 [} 256x8 296K0 4 256X8 256K8
. L2s L2s L2 L2% L28 L2s L2 L2$ L2s
counter bit 0 GPU GPU

| \
ol i { L4 White Space ! 7 i
(*Marketing hat on* ... *cough*: ';m &

! .Integrated Thermal Pérformance Booster™ x.P‘Ht. o
) | Zen3 Core | Zen3 Core | Zen3 Core | Zen3 Core ;
counter bit 1 : ;
| | 1 \
| ’ !

|

i
carry on) x W
overflow

counter bit 2 l;: " g TS T

Cezanne die shot from Fritzchens Fritz: https://www.flickr.com/photos/130561288@N04/51375154375/

https://lcamtuf.substack.com/p/clocks-in-digital-circuits Annotated by Locuza, August 2021

Abstraction #7

* All programs and algorithms can be
decomposed to a standard set of no
more than 81 basic instructions —
standardized by Intel in 1978 — (this is the
Xx86 instruction set, named for the
original chips called the 8086 and the

8088). Notice how one “Multiply” step of
* More complex instructions (such as 3x3 or 0011 MULOO11
multiply or divide) can be expressed as a

ST : - can also be decomposed into multiple
set of similar instructions done in order ADD steps:

* Modern CPUs/GPUs extend the 81 0011 ADD 0011 = 0110 (i.e. 6
0110 ADD 0011 =1001 (i.e. 9

https://en.wikipedia.org/wiki/X86 instruction listings

https://en.wikipedia.org/wiki/X86_instruction_listings

DSView v1.2.1

DSLogic PLus ~ % 2.00s 7 @ 1MHz “ @ @ N/fl ‘ﬁ & O’ g [i

USB 2.0 Options Mode Start Instant Trigger Decode Measure Search Display File

1M1 Logic Analyzer W] +933.78ms +936.15ms +938.52ms +940.89ms +943.26ms -NPYWSRSNE3+048.00ms +950.37ms +952. Protocol

1
IIIIIII.IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|:IIIIIIII|IIIIIIIII|IIIIIIIII| + X Protocol search...

o g T D € D € 3 3 (D €3 6 3 3 €13 EID DD AR @ © X hox - OusRT

£ Q search

Matching Items: 200

O:UART: RX/TX

00

01

02

03
04

05

06

o7

08

-~ ~

Trigger Setting...

Simple Trigger

Advanced Trigger

Trigger Position:

Trigger Time: 2022-09-07 19:11:11
>

<

DSLogic PLus X @ 10 MHz o @ @ @ @ @ &

g N\ =
Options Mode v Start Instant Trigger Decoder Measure Search

Protocol

4= X 1:UART

£F X O:UART

Q B Protocol List Viewer

Matching tems: 2
0:UART: RX/TX
Start bit
| Decoder Options

t
0:UART

0:UART: RX/TX

RX/TX (UART transceive line) * 2 4 e

Baud rate ~ 9600 Stop bit
Data bits 8 Start bit

Parity type g 4 -

S

Check parity? no Stop bit

Stop bits 1.0 Start bit

Bit order Isb-first 10 t

Data format ‘
Stop bit
Invert Signal?)
i Start bit

* Required channels

Start v Decode Start From

End ~ Decode End to Stop bit

3 Start bit
Stack Decoder «

n

Stop bit

2 Start hit

Abstraction #9 — Operating Systems keep the CPU
busy and work with both input and output devices

* An Operating System runs a loop of CPU instructions that follow a
sequence of CPU operations — (including moving things into and out
of memory).

* Critically the OS can handle ‘conditional’ input like key strokes and
mouse movements — to affect the ‘flow” of CPU logic using
conditional jump statements like “CMP” discussed before.

Abstraction #10 — Peripheral Devices are
viewed as memory locations by the CPU

e Consider that memory is just a sequence (vector) or array (matrix) of
bits. Some ‘locations’ of the memory sequence are reserved for
special functionality physically baked into the CPU. For example —in
BIOS mode we can get a pointer to video memory that starts at
0xb8000; - Writing to this part of ‘memory’ displays a character to a
position on the screen.

* Input devices trigger events that ‘write’ to memory accessibly by the
CPU. The OS will loop and check for these events. Certain features like
‘interrupts’ occur when values are seen in special bits in memory. For
example a mouse movement writes a 1 to an interrupt that makes the
OS focus on updating the mouse process, before returning to other
processes like updating the clock in the screen.

Abstraction #11-hundreds — The OS has so
many layers of abstraction it’s nuts

* The OS has many layers of abstraction starting with the Kernel — which manages:

Multi-threading of a process (true parallel processing on a single core does not exist — but can
be faked well by switching tasks imperceptibly fast)

Multiple-cores — true parallelisms does exist, e.g. if a CPU has 8 cores — but the OS needs to
do special tricks to make sure programs all ‘finish’ in the correct order for data to make
sense.

Hardware is abstracted as files using Hardware Abstraction Layer
Programs are abstracted as processes that can run in ‘parallel’, as threads

Processes are given ‘stacks’ of memory in RAM that are theoretically independent of each
other program.

Task scheduling
Interacting with Hardware Via Drivers
User accounts and user permissions

Files are chunks of memory. Files are wrapped with meta data and special attributes in
memory.

And on...

Abstraction #hundreds — thousands — Programming languages and
frameworks are build on the OS

’r n

* A user writes code “if (1+1 == 2) then print ‘True statement’ ” this is converted to
CPU instructions that use both comparison “CMP” and writing to memory via
“MOV” and this is what compiling a program from text to binary is.

* Various programming languages save time by inventing things like garbage
collection (removing data from the process stack in memory), pointers (virtual
locations/address of data in memory), and object oriented design (ability to quickly
reuse chunks of code to make copies of similar things)

* Developers develop framework of text-based code to share with other developers
to save time — this may be open source frameworks (could be thousands of man-
hours of work saved). A developer can then run a single line of code to call
something in a framework that is millions of lines long. For example, this is how to
grab a webcam picture, and display it in ONLY four lines:

import cv2 # import a framework, in this case a Python module
vid = cv2.VideoCapture(0) # define a video capture object, i.e. a connection to your physical webcam
ret, frame = vid.read() # grab the picture from the webcam

cv2.imshow('frame’, frame) # Display the resulting frame on screen

Abstractions in Math

e Set Theory

832) (% 232%
(1) . e
A AUB

@ 6 3 613
(3) 9

e Coordinate Transformations
* Algebra

equation

expression _
| variable
L

!
52x2 —|9x|+ 36 =zm+8T2

I
i ,| constant
term coefficient

2-dimensional [edit]

Let (x,y) be the standard Cartesian coordinates, and (7,) the standard polar coordinates.

To Cartesian coordinates |[edit]

From polar coordinates |[edit]

Jacobian = det

x =rcosf

y = rsinf
O(z,y) [cos@ —rsinH]
d(r,0) ~ |sinf rcosé
Oz,y) _
a(r, 0)

https://en.wikipedia.org/wiki/List_of _common_coordinate_transformations

Abstractions in Math, cont.

* Einstein Field Equations

The Einstein field equations (EFE) may be written in the form:[Il]
G +Agu = kT,

where Guv is the Einstein tensor, g,,,, is the metric tensor, Tuv is the stress—energy tensor, A is the

cosmological constant and k is the Einstein gravitational constant.

* Instead of the longer format:

1, | 1 3 1
597020u98, + 597060098 — 597 0aDsgw — 5970400905 — 59”97 0092 ugpy
1 s o 1 | 1, 1
_ Egﬁ)« 9% 0agpr0vgus + Z'-""BA 901 9ar0, 98 + 1 9705 19| 0y gua — 109 9*°95 |9| Ba gy

1 af
g™ a a ar e A v _T.v
"—]:lglg .3 Igl H-g g.f-‘ C"l H

ChatGPT

* Prompt -> Lexical parsed keys -> vectorized input -> knowledge graph
traversal (relationship nodes and weights) -> floating point weights
across a neural network -> vectorized output -> iterative generative

diminishing return loops on language -> vectorized output -> text
output

Homework -

* Without Googling it — can you craft a byte subtractor using only the
logic gates AND, OR, NOT?

	Default Section
	Slide 1: Mathematics of Computers by Matthew Zamora
	Slide 2: Transistors have a pass through voltage that is moderated by a signal voltage
	Slide 3: Two Types of Transistors – Control line either turns on or off the output
	Slide 4: Turning on the gate (signal line) creates an electric field that creates a ‘conductive’ zone of the semiconductor allowing electricity to flow. Only a small voltage is needed to establish the conductive zone – but a high voltage can flow through
	Slide 5: Transistor Symbols
	Slide 6: Bit Addition
	Slide 7: Logic
	Slide 8: Abstraction #1 Voltage as True/False
	Slide 9: Abstraction #2
	Slide 10: Abstraction #2 – part B
	Slide 11: Abstraction #2 – part C
	Slide 12
	Slide 13: Math has a long history of abstracting numbers, and storing them by a base
	Slide 14: Abstraction #3 – Addition Can Be Done Via Comparting the State of Two Bit Vectors
	Slide 15: Abstraction #4 Basic Logic can be represented by physical transistor configurations
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Universal Turning Machine
	Slide 21: Abstraction #5 -Bit Addition Is a Set of Logic Gates
	Slide 22: The Full Bit Adder
	Slide 23: The ADD instruction a one byte (8 bits) adder
	Slide 24: Abstraction #6 – The CPU has instructions that ‘trigger’ transistor-based logic
	Slide 25: CPU and Microprocessors
	Slide 26: Abstraction #7
	Slide 27
	Slide 28
	Slide 29: Abstraction #9 – Operating Systems keep the CPU busy and work with both input and output devices
	Slide 30: Abstraction #10 – Peripheral Devices are viewed as memory locations by the CPU

	Untitled Section
	Slide 31: Abstraction #11-hundreds – The OS has so many layers of abstraction it’s nuts
	Slide 32: Abstraction #hundreds – thousands – Programming languages and frameworks are build on the OS
	Slide 33: Abstractions in Math
	Slide 34: Abstractions in Math, cont.
	Slide 35: ChatGPT
	Slide 36: Homework -

