
Mathematics of Computers
by

Matthew Zamora

Presented to Rockville Science Center’s Numberphiles on 16Nov23

Transistors have a pass through voltage that is
moderated by a signal voltage

Notice how the signal voltage could be orders of magnitude lower than the through voltage, allowing for a step up
voltage similar to how a CPU (low voltage) can turn ‘on’ an electric motor (high voltage).

Two Types of Transistors – Control line either
turns on or off the output
• P-type – giving the gate pin voltage, turns off the output

• N-type – giving the gate pin voltage turns on the output

• In practice we only need three pins instead of four – because the gate
pin and power supply can share the same ground.

https://www.theengineeringprojects.com/2018/06/introduction-to-transistor.html

Turning on the gate (signal line) creates an electric field that creates a
‘conductive’ zone of the semiconductor allowing electricity to flow. Only
a small voltage is needed to establish the conductive zone – but a high
voltage can flow through the bridge.

https://www.britannica.com/technology/transistor

Transistor Symbols

Bit Addition

Logic

• A Cat is a Dog, and a Hamster is a Mammal -> False and True -> False

• 1=1 or 2=3, True or False -> True

• It is not true that a Cat is a Dog, and a Hamster is a Mammal ->
 (not False) and True -> (True) and True -> True

Abstraction #1 Voltage as True/False

• Let True be a wire with 5V, and False be a wire with 0V (grounded)

Abstraction #2

• Let numbers be represented as an ordered set of bits (a Boolean
vector, or truth vector)

• Following n^2 order, represent arbitrary numbers as follow:

Abstraction #2 – part B

• Letters can also be represented

https://www.computerhope.com/issues/ch001632.htm

Abstraction #2 – part C

• In fact – let any arbitrary symbol be represented as a unique
sequence of bits. What symbols are depend on how they are used.
Common uses:
• Instruction sequences – instruct the CPU what operation to do next

• Location in memory – a location to the start of a sequence of binary
information in a matrix of bits (RAM)

• Anything a program might be using – for example a floating point (decimal) of
arbitrary (or fixed) decimal precision

https://trekhleb.dev/blog/2021/binary-floating-point/

Math has a long history of abstracting
numbers, and storing them by a base
An Abicus. Note how for 9, one bead represents 5.

Abstraction #3 – Addition Can Be Done Via
Comparting the State of Two Bit Vectors

6
+7

=13

22
+23
=45

53
+38

39
=130

Abstraction #4 Basic Logic can be represented
by physical transistor configurations

https://www.101computing.net/creating-logic-gates-using-transistors/

Universal Turning Machine
Any arbitrary algorithm can be run as a series of steps
assuming:
• There is infinite memory tape that can be read from,

and written to
• A machine can read the tape, and do conditional steps

based on the value loaded from the tape:
• Move to a given location and trigger a read
• Move to a given location and trigger a write based

on ‘state’ set from the previous reads
• With that – any programming language can be written!
• RAM is the memory, and the CPU is the machine

fetching data from RAM, and doing an operation on
the data – eventually writing back to RAM (this writing
can directly control your monitor or peripheral devices
too!)

• Note that the “Von-Neumann architecture” is the
practical implementation of a Turing machine used in
modern computers as a state-machine.

Abstraction #5 -Bit Addition Is a Set of Logic
Gates

The Full Bit Adder

The ADD instruction a one byte
(8 bits) adder

Abstraction #6 – The CPU has
instructions that ‘trigger’
transistor-based logic
• Notice the “ADD” instruction that will compare

one byte (e.g. 00000001 + 00000010) and move
the result to ‘results’ location called a register
(result: 00000011)

• There is also a “MOV” which moves to a
specified location in memory

• Critically there is a “CMP” which compares two
values, and will move to location A if the first
values is than the second value, otherwise it
will go to location B. This is like the ‘if this then
do this else do that’ type of logic in
programming language. This allows for dynamic
program branching.

• One instruction is called ‘per clock tick’ – a
square wave

CPU and Microprocessors

https://lcamtuf.substack.com/p/clocks-in-digital-circuits

Abstraction #7

• All programs and algorithms can be
decomposed to a standard set of no
more than 81 basic instructions –
standardized by Intel in 1978 – (this is the
x86 instruction set, named for the
original chips called the 8086 and the
8088).

• More complex instructions (such as
multiply or divide) can be expressed as a
set of similar instructions done in order

• Modern CPUs/GPUs extend the 81

https://en.wikipedia.org/wiki/X86_instruction_listings

Notice how one “Multiply” step of
 3 x 3 or 0011 MUL 0011

can also be decomposed into multiple
ADD steps:
0011 ADD 0011 = 0110 (i.e. 6)
0110 ADD 0011 = 1001 (i.e. 9)

https://en.wikipedia.org/wiki/X86_instruction_listings

Abstraction #9 – Operating Systems keep the CPU
busy and work with both input and output devices

• An Operating System runs a loop of CPU instructions that follow a
sequence of CPU operations – (including moving things into and out
of memory).

• Critically the OS can handle ‘conditional’ input like key strokes and
mouse movements – to affect the ‘flow’ of CPU logic using
conditional jump statements like “CMP” discussed before.

Abstraction #10 – Peripheral Devices are
viewed as memory locations by the CPU
• Consider that memory is just a sequence (vector) or array (matrix) of

bits. Some ‘locations’ of the memory sequence are reserved for
special functionality physically baked into the CPU. For example – in
BIOS mode we can get a pointer to video memory that starts at
0xb8000; - Writing to this part of ‘memory’ displays a character to a
position on the screen.

• Input devices trigger events that ‘write’ to memory accessibly by the
CPU. The OS will loop and check for these events. Certain features like
‘interrupts’ occur when values are seen in special bits in memory. For
example a mouse movement writes a 1 to an interrupt that makes the
OS focus on updating the mouse process, before returning to other
processes like updating the clock in the screen.

Abstraction #11-hundreds – The OS has so
many layers of abstraction it’s nuts
• The OS has many layers of abstraction starting with the Kernel – which manages:

• Multi-threading of a process (true parallel processing on a single core does not exist – but can
be faked well by switching tasks imperceptibly fast)

• Multiple-cores – true parallelisms does exist, e.g. if a CPU has 8 cores – but the OS needs to
do special tricks to make sure programs all ‘finish’ in the correct order for data to make
sense.

• Hardware is abstracted as files using Hardware Abstraction Layer
• Programs are abstracted as processes that can run in ‘parallel’, as threads
• Processes are given ‘stacks’ of memory in RAM that are theoretically independent of each

other program.
• Task scheduling
• Interacting with Hardware Via Drivers
• User accounts and user permissions
• Files are chunks of memory. Files are wrapped with meta data and special attributes in

memory.
• And on…

Abstraction #hundreds – thousands – Programming languages and
frameworks are build on the OS

• A user writes code “if (1+1 == 2) then print ‘True statement’ ” this is converted to
CPU instructions that use both comparison “CMP” and writing to memory via
“MOV” and this is what compiling a program from text to binary is.

• Various programming languages save time by inventing things like garbage
collection (removing data from the process stack in memory), pointers (virtual
locations/address of data in memory), and object oriented design (ability to quickly
reuse chunks of code to make copies of similar things)

• Developers develop framework of text-based code to share with other developers
to save time – this may be open source frameworks (could be thousands of man-
hours of work saved). A developer can then run a single line of code to call
something in a framework that is millions of lines long. For example, this is how to
grab a webcam picture, and display it in ONLY four lines:

import cv2 # import a framework, in this case a Python module
vid = cv2.VideoCapture(0) # define a video capture object, i.e. a connection to your physical webcam
ret, frame = vid.read() # grab the picture from the webcam
cv2.imshow('frame', frame) # Display the resulting frame on screen

Abstractions in Math

• Set Theory

• Coordinate Transformations

• Algebra

https://en.wikipedia.org/wiki/List_of_common_coordinate_transformations

Abstractions in Math, cont.

• Einstein Field Equations

• Instead of the longer format:

ChatGPT

• Prompt -> Lexical parsed keys -> vectorized input -> knowledge graph
traversal (relationship nodes and weights) -> floating point weights
across a neural network -> vectorized output -> iterative generative
diminishing return loops on language -> vectorized output -> text
output

Homework -

• Without Googling it – can you craft a byte subtractor using only the
logic gates AND, OR, NOT?

	Default Section
	Slide 1: Mathematics of Computers by Matthew Zamora
	Slide 2: Transistors have a pass through voltage that is moderated by a signal voltage
	Slide 3: Two Types of Transistors – Control line either turns on or off the output
	Slide 4: Turning on the gate (signal line) creates an electric field that creates a ‘conductive’ zone of the semiconductor allowing electricity to flow. Only a small voltage is needed to establish the conductive zone – but a high voltage can flow through
	Slide 5: Transistor Symbols
	Slide 6: Bit Addition
	Slide 7: Logic
	Slide 8: Abstraction #1 Voltage as True/False
	Slide 9: Abstraction #2
	Slide 10: Abstraction #2 – part B
	Slide 11: Abstraction #2 – part C
	Slide 12
	Slide 13: Math has a long history of abstracting numbers, and storing them by a base
	Slide 14: Abstraction #3 – Addition Can Be Done Via Comparting the State of Two Bit Vectors
	Slide 15: Abstraction #4 Basic Logic can be represented by physical transistor configurations
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Universal Turning Machine
	Slide 21: Abstraction #5 -Bit Addition Is a Set of Logic Gates
	Slide 22: The Full Bit Adder
	Slide 23: The ADD instruction a one byte (8 bits) adder
	Slide 24: Abstraction #6 – The CPU has instructions that ‘trigger’ transistor-based logic
	Slide 25: CPU and Microprocessors
	Slide 26: Abstraction #7
	Slide 27
	Slide 28
	Slide 29: Abstraction #9 – Operating Systems keep the CPU busy and work with both input and output devices
	Slide 30: Abstraction #10 – Peripheral Devices are viewed as memory locations by the CPU

	Untitled Section
	Slide 31: Abstraction #11-hundreds – The OS has so many layers of abstraction it’s nuts
	Slide 32: Abstraction #hundreds – thousands – Programming languages and frameworks are build on the OS
	Slide 33: Abstractions in Math
	Slide 34: Abstractions in Math, cont.
	Slide 35: ChatGPT
	Slide 36: Homework -

